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In my research I investigate useful properties of metric spaces through the lens of topological data
analysis and magnitude. An isometric invariant of metric spaces, magnitude has been shown to
encode a number of other valuable invariants, such as dimension and curvature. In particular,
magnitude is known to be strongly connected to Minkowski dimension for positive definite compact
metric spaces. It stands to reason that magnitude could be leveraged to estimate the dimensions of
compact metric spaces from which point clouds are sampled. However, the computational complexity
of magnitude renders this prospect nearly impossible to realize for metric spaces of larger size. In
recent work with Sara Kalisnik and Nina Otter, we identify alpha magnitude, an invariant arising
from topological data analysis and inspired by magnitude, as a method which provides a potential
solution to this problem at substantially reduced computational complexity.[OKO22]

Another topic I have worked on involves the stability of magnitude and its usefulness as a venue for
data analysis. In forthcoming work, we establish the continuity of magnitude for finite spaces of
strictly negative type, expanding the class of spaces to which magnitude may be applied. While
magnitude is difficult to compute for spaces of high cardinality, spaces of low cardinality but high
dimension still provide an opportunity for magnitude to provide insight.

Alpha Magnitude
Introduced in 2011 by Tom Leinster [Lei13], magnitude is an isometric invariant of metric spaces.
The computation for finite spaces is fairly straightforward. For metric space X, we begin with a
distance matrix D where each entry di,j represents the distance between point i and point j in
space X.

i = (0, 0)
•

j = (1, 0)
•

k = (1/2,
√

3/2)
•

A space of 3 equidistant points...

...and its distance matrix.

The similarity matrix.

To compute magnitude we first take the negative exponential of each entry of the above distance
matrix, referred to as a similarity matrix. We then find a vector such that the product of the vector
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and the above matrix has only 1 in each entry. We refer to this vector as a weighting.

A weighting for the above metric space.

The sum of the entries in the weighting is referred to as the magnitude. Higher magnitudes
correspond to more less clustered spaces, and vice versa. But this computation required us to solve
an Ax = b matrix equation. Magnitude is suitable for computation in spaces of lower cardinality,
but as spaces become more populous magnitude becomes substantially more expensive, rendering it
computationally infeasible. On the other hand, magnitude bears strong connection to persistence as
first demonstrated by Otter [Ott22]. Govc and Hepworth [GH21] further develop this concept by
defining persistent magnitude for finite spaces, an invariant sharing many of the same properties
held by magnitude, and suggesting a definition for compact spaces. We improve on this concept
by introducing alpha magnitude, the persistent magnitude of an alpha complex of a metric space,
and providing a definition for the alpha magnitude of compact metric spaces. Unlike magnitude, in
cases like the one above in 2 dimensions, the computational complexity of alpha magnitude scales
only linearly with the number of points.
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Example 2: The alpha complex for the space from before, at different filtration levels. The barcode
computed for the alpha complex is shown below.

We compute the alpha magnitude of the space X through the following equation over the barcode
{[ak,i, bk,i)}mk

i=1, where k is the homology degree and a and b are the endpoints of each bar. This
equation is the general term for the persistent magnitude of a space X, an invariant first introduced
by Govc and Hepworth [GH21].

|X|α =
∞∑
k=0

mk∑
i=1

(−1)k(e−ak,i − e−bk,i) .

Q momalley@wesleyan.edu

mailto:momalley@wesleyan.edu


Alpha magnitude, like magnitude, is higher in scattered spaces and lower in concentrated ones. It
approaches the cardinality of the space as the distances become very large, and approaches 1 when
the distances become very small.

There are many definitions which exist to extend magnitude to compact spaces, but they are known
to agree for positive definite compact metric spaces, by a result of Meckes [Mec13]. The most
accessible is to take the magnitude of a positive definite compact metric space X to be

|X| = sup
#(A)<∞, A⊂X

|A|,

the supremal magnitude over all finite subsets of X. Similarly, for alpha magnitude, we take the
alpha magnitude of a compact metric space to be

|X|α = lim
#(A)<∞, A⊂X

|A|α

when this limit exists over all finite sequences of subsets converging to X.

For positive definite compact metric spaces, the following expression is known to be equivalent to
Minkowski dimension[Mec13]:

dimMink(X) = dimMag(X) = lim
t→∞

log |tX|
log t .

This limit is referred to as the magnitude dimension of the space X. While this result is initially
encouraging for the purposes of dimension estimation via sampling, magnitude is much too expensive.
Thus, we conjecture the following expression

dimα(X) = lim
t→∞

log |tX|α
log t

is equivalent to Minkowski dimension as well, where alpha magnitude exists. In the cases we examine,
such as the Cantor set and the unit circle with the metric inherited from R2, we prove this to be
true. For the Feigenbaum attractor, a set for which the Hausdorff dimension is only computationally
approximated, our estimation falls quite close to existing methods. Thus, we posit that alpha
magnitude dimension is a rich area to be examined in the interest of developing new means of
estimating dimension.

Stability
In the case of magnitude, an important question remains the stability of magnitude for finite metric
spaces. This is a critical result in the use of magnitude for data analysis. If small shifts in the
underlying space can produce dramatically different magnitude, non-existent magnitude, or behavior
of the magnitude which is in some sense degenerate, magnitude becomes less useful as a tool for the
analysis of that dataset. Unfortunately, there are examples for which this is a very real possibility.
Consider K3,2, the bipartite complete graph on 3 and 2 points, endowed with the shortest path
metric.
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Example 3: The bipartite complete graph on 3 and 2 points, K3,2

The magnitude function for this space is

|tK3,2| =
5− 7e−t

(1 + e−t)(1− 2e−2t)

and is thus undefined at t = log(
√

2). We need to take care with cases like these. Leinster [Lei13]
establishes that the magnitude function (a partially defined function obtained by introducing a scale
factor t to a metric space (X, d)) is continuous at all but finitely many points in the space, and
increasing for t sufficiently large. An existing result of Meckes[Mec13] establishes that magnitude is
lower semicontinuous for positive definite finite metric spaces. In forthcoming work, we extend these
results to a result for the continuity of magnitude for finite metric spaces of strictly negative type.

We say a metric space (X, d) is of strictly negative type if for any subset of {x1, . . . , xn} ⊆ X, and
all real numbers ζ1, . . . , ζn ∈ R with ζ1 + ζ2 + . . .+ ζn = 0, we have∑

1≤i≤j≤n
d(xi, xj)ζiζj < 0.

For such spaces, (a class which includes all Euclidean spaces Rn with the usual metric) the magnitude
function |tX| is defined on t ∈ (0,∞) and can be extended to t ∈ [0,∞) in a continuous manner
by defining |tX| = 1. This is desirable since magnitude is meant to provide an evaluation of the
effective number of points in the space. However, if lim

t→0
|tX| 6= 1, we have a function which tells us

a space with effectively one point has a different number.

The implications of a stability result of this nature for data science are substantial. So long as a
point cloud is known to exist in a metric space of strictly negative type, the magnitude function
will assuredly be continuous. Thus we achieve a wider class of datasets for which magnitude
based clustering algorithms, dimension estimation, and other methods employing magnitude may be
applied. In particular, finite data sets with irregular distance functions between observations become
accessible so long as the point cloud is of strictly negative type.

Future work
In future work, I would seek to further develop the theory of alpha magnitude and the means through
which it may be employed in the service of data science. An open question is the stability of alpha
magnitude in compact spaces, which would be a natural question. For connections to other invariants,
magnitude is known to be related to curvature and volume, in addition to dimension. Persistent
homology is also known to have strong connection to curvature, and so it would be reasonable to
expect that alpha magnitude holds similar properties. Since alpha magnitude holds computational
advantage over magnitude, results providing a connection to other invariants potentially provide a
method to estimate these qualities with high fidelity.
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Magnitude originally arose as a measure of biological diversity and thus bears strong correlation
to clustering in metric spaces. Alpha magnitude has similar properties by construction, and thus
warrants further study in this venue. I would develop algorithms which can be employed to use alpha
magnitude to detect clusters. In datasets of low dimension, alpha magnitude can be computed
in as little as linear time with respect to the cardinality of the dataset, again leveraging the
computational advantage over magnitude. I would further seek to demonstrate the usefulness of
such algorithms in comparison to existing methods of clustering. No clustering algorithm is perfect,
but magnitude seems to be a particularly good one. It stands to reason that alpha magnitude
can provide comparable results. Potential work could include identifying and classifying samples
from natural fractal formations such as snowflakes or fungi, as well as other datasets which lend
themselves well towards clustering analysis.

In addition, I would seek to employ magnitude in the estimation of dimension for datasets which
alpha magnitude is ill-equipped. Since we have a stability result, we can approach this question
with some confidence. In particular, magnitude is well suited towards computation for datasets of
low cardinality but high dimension. This is precisely where alpha magnitude is weaker, since the
computational speedup is only for datasets of lower dimension. Potential work could include medical
datasets, where we have few individuals but numerous observations for different characteristics,
survey data, and any other dataset where robust clustering analysis is desired and alpha magnitude
is unsuitable.

The implementations of magnitude in clustering are manifold. A hierarchical clustering algorithm
using magnitude is easily defined, simply by choosing clusters of lowest magnitude and working
upwards. Leinster [Lei13] demonstrates that magnitude increases over expansions of Euclidean
space, and our stability result assures that for spaces of negative type (such as Euclidean space)
magnitude is continuous on [0,∞), so the use of magnitude in hierarchical clustering is appropriate.
Another potential use of magnitude and alpha magnitude is as an easy check for other systems
against existing clustering algorithms. A proposed cluster with particularly high magnitude is likely
not very clustered at all, and so the use of magnitude provides a simple indicator as to whether a
cluster ought to pass muster.

Another direction in which I’d take the development of alpha magnitude and magnitude is through
implementation in machine learning environments. While magnitude is computationally inefficient
in many cases, there are some (as described above, datasets of low cardinality but high dimension)
where it makes sense. Others, such as Adamer et. al.[AOB+21], have found success using the
magnitude vector, a method which saves on computational expense by only considering local
information. Such methods have potential to improve results for clustering through considering
datasets in patches, thus allowing substantial computational speedup. I would further investigate
the potential to employ such methods in the use of magnitude in data science, and seek to otherwise
enhance the computational speed of magnitude.

On the other hand, since alpha magnitude is so easily computed, and yields such stark results
in the case of the estimation of alpha magnitude dimension, it is reasonable to expect that ML
applications of alpha magnitude could be achieved in time comparable to faster clustering algorithms,
while preserving the richness of magnitude in the observations. The use of ML in clustering is well
established, so the methods through which alpha magnitude may be implemented already exist and
can be easily investigated to determine if there is improvement to be had. This direction of research
has the potential to be exceedingly valuable, especially in the analysis of complicated data structures
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which defy traditional statistical methods of sorting. Topological data analysis has provided multiple
such results in the past (cancer types [NLC11], diabetes [LCG+15], etc.) and so the use of alpha
magnitude in similar settings is highly exciting.
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